sal1 determines the number of aleurone cell layers in maize endosperm and encodes a class E vacuolar sorting protein.
نویسندگان
چکیده
A microscopy-based screen of a large collection of maize Mutator (Mu) transposon lines identified the supernumerary aleurone layers 1-1 (sal1-1) mutant line carrying up to seven layers of aleurone cells in defective kernel endosperm compared with only a single layer in wild-type grains. Normal, well filled endosperm that is homozygous for the sal1-1 mutant allele contains two to three layers of aleurone cells. Cloning of the sal1 gene was accomplished by using Mu tagging, and the identity of the cloned gene was confirmed by isolating an independent sal1-2 allele by reverse genetics. Homozygous sal1-2 endosperm has two to three layers of aleurone cells in normal, well filled grains. In situ hybridization experiments reveal that the sal1 gene is ubiquitously expressed in vegetative as well as zygotic grain tissues, with no difference being detected between aleurone cells and starchy endosperm cells. Northern blot analysis failed to detect the sal1-2 transcript in leaves of homozygous plants, suggesting that the allele is a true sal1 knockout allele. The sal1 gene encodes a homologue of the human Chmp1 gene, a member of the conserved family of the class E vacuolar protein sorting genes implicated in membrane vesicle trafficking. In mammals, CHMP1 functions in the pathway targeting plasma membrane receptors and ligands to lysosomes for proteolytic degradation. Possible roles for the function of the sal1 gene in aleurone signaling, including a defect in endosome trafficking, are discussed.
منابع مشابه
The defective seed5 (des5) mutant: effects on barley seed development and HvDek1, HvCr4, and HvSal1 gene regulation
Barley, one of the major small grain crops, is especially important in climatically demanding agricultural areas of the world, with multiple uses within food, feed, and beverage. The barley endosperm is further of special scientific interest due to its three aleurone cell layers, with the potential of bringing forward the molecular understanding of seed development and cell specification from A...
متن کاملSurface position, not signaling from surrounding maternal tissues, specifies aleurone epidermal cell fate in maize.
Maize (Zea mays) endosperm consists of an epidermal-like surface layer of aleurone cells, an underlying body of starchy endosperm cells, and a basal layer of transfer cells. To determine whether surrounding maternal tissues perform a role in specifying endosperm cell fates, a maize endosperm organ culture technique was established whereby the developing endosperm is completely removed from surr...
متن کاملThe thick aleurone1 mutant defines a negative regulation of maize aleurone cell fate that functions downstream of defective kernel1.
The maize (Zea mays) aleurone layer occupies the single outermost layer of the endosperm. The defective kernel1 (dek1) gene is a central regulator required for aleurone cell fate specification. dek1 mutants have pleiotropic phenotypes including lack of aleurone cells, aborted embryos, carotenoid deficiency, and a soft, floury endosperm deficient in zeins. Here we describe the thick aleurone1 (t...
متن کاملThe naked endosperm genes encode duplicate INDETERMINATE domain transcription factors required for maize endosperm cell patterning and differentiation.
The aleurone is the outermost layer of cereal endosperm and functions to digest storage products accumulated in starchy endosperm cells as well as to confer important dietary health benefits. Whereas normal maize (Zea mays [Zm]) has a single aleurone layer, naked endosperm (nkd) mutants produce multiple outer cell layers of partially differentiated cells that show sporadic expression of aleuron...
متن کاملThe regulation of gene expression in transformed maize aleurone and endosperm protoplasts. Analysis of promoter activity, intron enhancement, and mRNA untranslated regions on expression.
Gene expression in the aleurone and endosperm is highly regulated during both seed development and germination. Studies of alpha-amylase expression in the aleurone of barley (Hordeum vulgare) have generated the current paradigm for hormonal control of gene expression in germinating cereal grain. Gene expression studies in both the aleurone and endosperm tissues of maize (Zea mays) seed have bee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 11 شماره
صفحات -
تاریخ انتشار 2003